Cambridge International AS \& A Level

MATHEMATICS

9709/11
Paper 1 Pure Mathematics 1
October/November 2022
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$(3 x+2)(x-1)=2 \Rightarrow 3 x^{2}-x-4[=0]$	M1	OE Multiply by denominator and obtain a quadratic.
	$(3 x-4)(x+1)[=0]$	M1	Solve by factorising, formula or completing the square.
	$[x=]-1, \frac{4}{3}$	A1	Allow 1.33 If M1 M0, SC B1 possible for two correct answers.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(a)	$12\left(\frac{1}{2} \times 6-1\right)^{-4}\left[=12(2)^{-4}=\frac{3}{4}\right]$	M1	Substitute $x=6$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}$ SOI by gradient $\frac{3}{4}$ used.
	$y-4=\frac{3}{4}(x-6)$	A1	OE e.g. $y=\frac{3}{4} x-\frac{1}{2}$ or evaluates c in $y=\frac{3}{4} x+c$
	OR evaluates $c=-\frac{1}{2}$	using (6, 4) and gradient $\frac{3}{4}$. ISW	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(b)	$[y=]\left(\frac{12\left(\frac{1}{2} x-1\right)^{-3}}{-3}\right) \div \frac{1}{2}\left[=-8\left(\frac{1}{2} x-1\right)^{-3}\right]$	B2, 1, 0	
	$4=\frac{12 \times\left(\frac{1}{2} \times 6-1\right)^{-3}}{\frac{1}{2} \times-3}+c\left[\Rightarrow 4=-8 \times 2^{-3}+c\right] \Rightarrow c=[5]$	M1	Must have $+c$. Substitute $y=4, x=6$ and solve for c in an integrated expression. May be unsimplified.
	$[y=]-8\left(\frac{1}{2} x-1\right)^{-3}+5$	A1	OE Must see ' $y=$ ' or ' $\mathrm{f}(x)=$ ' in the working.
		4	

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} a x^{-\frac{1}{2}}-2$	B2, 1, 0	
	$0=\frac{1}{2} a(9)^{-\frac{1}{2}}-2 \Rightarrow \frac{a}{6}-2=0 \Rightarrow a=[12]$	M1	Substitute $x=9$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ into their derivative and solve a linear equation for a.
	$[a=] 12$	A1	
	$\left[y=\right.$ their $\left.a \times(9)^{\frac{1}{2}}-18=\right] 18$	A1 FT	FT on their a.
		5	

PUBLISHED

Question	Answer	Marks	Guidance
. 4	Coefficient of x^{2} in $\left(1+\frac{2}{p} x\right)^{5}$ is $10\left(\frac{2}{p}\right)^{2}=\frac{10 \times 2^{2}}{p^{2}}\left[=\frac{40}{p^{2}}\right]$	B1	Accept with x^{2} present. Must evaluate ${ }^{5} \mathrm{C}_{2}$
	Coefficient of x^{2} in $(1+p x)^{6}$ is $15(p)^{2}\left[=15 p^{2}\right]$	B1	Accept with x^{2} present. Must evaluate ${ }^{6} \mathrm{C}_{2}$
	$\frac{40}{p^{2}}+15 p^{2}=70$	*M1	Forming an equation in p with their coefficients, the given 70, no x terms and no extra terms.
	$15 p^{4}-70 p^{2}+40[=0]$ or $3 p^{4}-14 p^{2}+8[=0]$	DM1	Forming a 3-term equation in p (or another variable) with all terms on one side and their coefficients.
	$\begin{aligned} & {[5]\left(p^{2}-4\right)\left(3 p^{2}-2\right)[=0] \text { or } \frac{70 \pm \sqrt{70^{2}-4(15)(40)}}{30} \text { or }} \\ & \frac{14 \pm \sqrt{14^{2}-4(3)(8)}}{6} \end{aligned}$	DM1	Attempt to solve 3-term quartic (or quadratic in another variable) by factorisation, formula or completing the square.
	$p= \pm 2, \pm \sqrt{\frac{2}{3}}$	A1	OE e.g. $\pm \frac{\sqrt{6}}{3}$ or AWRT ± 0.816 If *M1 DM1 DM0, allow SC B1 for 4 correct values.
		6	

Question	Answer	Marks	Guidance
5(a)	$[2 r+8=20 \Rightarrow] r=6$	B1	
	Angle $A O B=\frac{8}{\text { their } 6}$	*M1	Expect $\frac{4}{3}$ OE $\left(76.4^{\circ}\right)$. M0 Assume triangle is equilateral.
	$\begin{aligned} & A B=2 \times 6 \sin \text { their } \frac{2}{3} \text { or } \sqrt{6^{2}+6^{2}-2 \times 6^{2} \cos \text { their } \frac{4}{3}} \\ & \text { or } A B=\frac{6}{\sin \left(\frac{\pi}{2}-\text { their } \frac{2}{3}\right)} \times \sin \text { their } \frac{4}{3} \end{aligned}$	DM1	For 6 read their 6.
	Perimeter $=[7.42+8=] 15.4$	A1	AWRT
		4	
5(b)	$\begin{aligned} & \text { Area }=\frac{1}{2} \times 6^{2} \times \text { their } \frac{4}{3}-\frac{1}{2} \times 6^{2} \times \sin \text { their } \frac{4}{3} \\ & \text { or Area }=\frac{1}{2} \times 6^{2} \times \text { their } \frac{4}{3}-2 \times \frac{1}{2}\left(6 \sin \text { their } \frac{2}{3}\right)\left(6 \cos \text { their } \frac{2}{3}\right) \end{aligned}$	M1	Sector area - whole triangle area. For 6 read their 6 . Sector area - 2(half triangle area).
	$=[24-17.49=] 6.51$	A1	AWRT
		2	

Question	Answer	Marks	Guidance
6(a)	$\frac{\sin \theta-\cos \theta+\sin \theta+\cos \theta}{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}\left[=\frac{\sin \theta-\cos \theta+\sin \theta+\cos \theta}{\sin ^{2} \theta-\cos ^{2} \theta}\right]=1$	*M1	Use common denominator and equate to 1.
	$2 \sin \theta\left[=\sin ^{2} \theta-\cos ^{2} \theta\right]=\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)$	DM1	Multiply by common denominator and replace $\cos ^{2} \theta$ by $1-\sin ^{2} \theta$.
	$2 \sin ^{2} \theta-2 \sin \theta-1=0$	A1	OE In the given form.
		3	
6(b)	$[\sin \theta=] \frac{2 \pm \sqrt{(-2)^{2}-4(2)(-1)}}{4}\left[=\frac{2 \pm \sqrt{4+8}}{4}=\frac{1 \pm \sqrt{3}}{2}\right]$	M1	Use formula or complete the square to solve a quadratic equation of the correct form.
	201.5° or 338.5°	A1 A1 FT	AWRT; A1 for either solution correct. A1 FT for 540 - (first value). If M0, allow SC B1 B1FT similarly.
		3	

Question	Answer	Marks	Guidance
7(a)	$r=0.8$	B1	SOI
	$50 \times(\text { their } 0.8)^{7}=10.5$	M1	Evaluate $8^{\text {th }}$ or $9^{\text {th }}$ term in GP.
	$50 \times(\text { their } 0.8)^{8}=8.39$. Hence 9th impact required	A1	AG Two terms correct + conclusion (mention of $9^{\text {th }}$ impact or u_{9} somewhere in the solution). Statement that one is <10 (and the other >10) is insufficient unless it mentions $9^{\text {th }}$ impact or u_{9}.
	Alternative method for final two marks: Logarithm method		
	$\begin{aligned} & 50 \times(\text { their } 0.8)^{n}<10 \Rightarrow(\text { their } 0.8)^{n}<0.5 \\ & n \log (\text { their } 0.8)<\log 0.5 \\ & n>\frac{\log 0.5}{\log (\text { their } 0.8)} \Rightarrow[n>] 7.2 \end{aligned}$	M1	
	$n=8$ hence $9^{\text {th }}$ impact required	A1	AG Need conclusion that mentions $9^{\text {th }}$ impact or u_{9}.
		3	
7(b)	$\frac{50\left(1-(\text { their } 0.8)^{20}\right)}{1-\text { their } 0.8}$	M1	OE Use of formula with their r SOI.
	$=247$	A1	Must be to the nearest mm (not 247.1).
		2	
7(c)	$\frac{50}{1-\text { their } 0.8}$	M1	Use of sum to infinity formula with their r SOI. Substituting a value of n into the sum formula M0.
	$=250$	A1	
		2	

Question	Answer	Marks	Guidance
8(a)	$\mathrm{f}^{\prime}(x)=-3(-1)(4)(4 x-p)^{-2}\left[=\frac{12}{(4 x-p)^{2}}\right]$	B2, 1, 0	
	> 0 Hence increasing function	B1FT	Correct conclusion from their $\mathrm{f}^{\prime}(x)$.
		3	
8(b)	$y=2-\frac{3}{4 x-p} \Rightarrow(y-2)(4 x-p)=-3 \quad \text { or } \quad 4 x y-p y=8 x-2 p-3$	M1	OE Form horizontal equation. Sign errors only, no missing terms. May go directly to $4 y=p-\frac{3}{x-2}$ OE M1 M1
	$4 x y-8 x=p y-2 p-3 \Rightarrow 4 x(y-2)=p(y-2)-3$ or $4 x=-\frac{3}{x-2}+p$	M1	OE Factorise out [4] x or [4] y.
	$x=\frac{p(y-2)-3}{4(y-2)}\left[\Rightarrow x=\frac{p}{4}-\frac{3}{4 y-8}\right]$ or $\frac{-\frac{3}{x-2}+p}{4}$	M1	OE Make x (or y) the subject.
	$\left[\mathrm{f}^{-1}(x)=\right] \frac{p}{4}-\frac{3}{4 x-8}$	A1	OE in correct form (must be in terms of x).
		4	
8(c)	$[p=] 8$	B1	
		1	

Question	Answer	Marks	Guidance
9(a)	$(x-2)^{2}+5$	B1	
		1	
9(b)	$2\left(\left\{(x+1)^{2}\right\}+\{5\}\right)$	B2, 1, 0	
		2	
9(c)	$[\mathrm{g}(x)=] 2 \mathrm{f}(x+3)$ or $k=2, h=3$	B1	In correct form. B0 if contradiction.
		1	
9(d)	$\left\{\right.$ Translation $\left\{\binom{-3}{0}\right\}$	B2, 1, 0 FT	FT on their $x+3$ or $h=3$.
	\{Stretch \{ y direction, factor 2$\}$	B2, 1, 0 FT	FT on their 2 or $k=2$.
		4	

Question	Answer	Marks	Guidance
10(a)	$\pm \int\left(2 x^{1 / 2}+1\right)-\left(\frac{1}{2} x^{2}-x+1\right) \mathrm{d} x\left[= \pm \int 2 x^{1 / 2}-\frac{1}{2} x^{2}+x \mathrm{~d} x\right]$	*M1	
	$\pm\left(\frac{4 x^{3 / 2}}{3}+x-\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+x\right)\right)$ or $\pm\left(\frac{4 x^{3 / 2}}{3}-\frac{x^{3}}{6}+\frac{x^{2}}{2}\right)$	B2, 1, 0	OE Coefficients may be unsimplified.
	$\pm\left(\frac{32}{3}-\frac{32}{3}+8\right)$ or $\pm\left(\frac{44}{3}-0-\frac{20}{3}+0\right)$	DM1	$\pm(\mathrm{F}(4)-\mathrm{F}(0))$ using their integral(s).
	$=8$	A1	Depends on all previous marks. If $*$ M1 B2 DM0 and limits stated, SC B1 for +8
		5	
10(b)	Upper curve: $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-\frac{1}{2}}$. Lower curve: $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-1$	M1 A1	Attempt at differentiating one function. A1 if both correct.
	At $x=4$: gradient of upper curve $=\frac{1}{2}$, gradient of lower curve $=3$	M1	Evaluate two gradients using $x=4$.
	$\alpha=\tan ^{-1} 3-\tan ^{-1} \frac{1}{2}[=71.57-26.57]$	M1	Use inverse tan to find angles then subtract. OR find equations of both tangents then Pythagoras using a point on each e.g. on axes. OR cosine rule using intercepts or proportion.
	$[\alpha=] 45^{\circ}$	A1	AWRT
		5	

Question	Answer	Marks	Guidance
11(a)	$x^{2}+(m x+10)^{2}=20 \text { or } y^{2}+\left(\frac{y-10}{m}\right)^{2}=20 \text { or } m x+10=\sqrt{20-x^{2}}$	*M1	Substitute equation of line into equation of circle.
	$\begin{aligned} & x^{2}\left(1+m^{2}\right)+20 m x+80 \quad[=0] \text { or } \\ & y^{2}\left(m^{2}+1\right)-20 y+\left(100-20 m^{2}\right)[=0] \end{aligned}$	A1	Collect terms into a 3 term quadratic.
	$\begin{aligned} & (20 m)^{2}-4\left(1+m^{2}\right) \times 80\left[=0 \Rightarrow 80 m^{2}-320=0 \Rightarrow[80]\left(m^{2}-4\right)=0\right] \\ & \text { or }(-20)^{2}-4\left(m^{2}+1\right)\left(100-20 m^{2}\right)\left[=0 \Rightarrow[80]\left(m^{4}-4 m^{2}\right)=0\right] \end{aligned}$	DM1	Use $b^{2}-4 a c[=0]$.
	$m= \pm 2$	A1	Two values for m.
		4	

Question	Answer	Marks	Guidance
11(b)	Method 1: Use of quadratic		
	$\begin{aligned} & \left(1+2^{2}\right) x^{2} \pm 20(2) x+80\left[=0 \Rightarrow 5 x^{2} \pm 40 x+80=0\right] \\ & \text { or } y^{2}\left(2^{2}+1\right)-20 y+\left(100-20\left(2^{2}\right)\right)\left[=0 \Rightarrow[5]\left(y^{2}-4 y+4\right)=0\right] \end{aligned}$	M1	Sub their m into their quadratic in x or y or restart with their tangent equation and equation of circle.
	$[5](x \pm 4)^{2}=0 \Rightarrow x= \pm 4$ or $y=2$	A1	Correct solutions or one correct pair (x,y).
	$(-4,2),(4,2)$	A1	Two correct points with x and y paired correctly.
	Method 2: Using equation of normal		
	$2 x+10=-\frac{1}{2} x \quad$ or $\quad-2 x+10=\frac{1}{2} x$	M1	Equate tangent and normal and solve for x.
	$x= \pm 4$	A1	Two correct x-values or one correct pair (x,y).
	$(-4,2),(4,2)$	A1	Two correct points with x and y paired correctly.
		3	

Question	Answer	Marks	Guidance
11(c)	Method 1: Using angle at circumference		
	$\cos B O A=\frac{\sqrt{20}}{10} \text { or } \sin B O A=\frac{\sqrt{80}}{10} \text { or } \tan B O A=\frac{\sqrt{80}}{\sqrt{20}}[=2]$	*M1	Use a trig function in triangle $A O B$.
	$B O A=63.4^{\circ} \Rightarrow B O C=126.8^{\circ}$ or 126.9°	DM1	Strategy involving doubling
	$[B D C=] 63.4^{\circ}$	A1	AWRT
	Metho 2: Using cosine rule		
	$B C=8, B D=\sqrt{(\sqrt{20}+4)^{2}+2^{2}}, C D=\sqrt{(\sqrt{20}-4)^{2}+2^{2}}$	*M1	Calculate two lengths in triangle $B C D$.
	$64=80-16 \sqrt{5} \cos B D C$	DM1	Use cosine rule with their lengths
	$\cos B D C=\frac{\sqrt{5}}{5} \Rightarrow[B D C=] 63.4^{\circ}$	A1	AWRT
	Method 3: Subtract angles from $90{ }^{\circ}$		
	Calculate one angle at $D[=13.28]$	*M1	$O D B$ or angle between $C D$ and the vertical from D
	Calculate a second angle at $D[=13.28]$ and subtract both from 90°	DM1	
	$[B D C=] 63.4^{\circ}$	A1	AWRT
		3	

